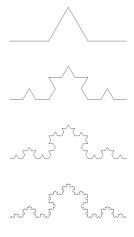

Untersuchung fraktaler Kurven und fraktaler Mengen

Arne Koenen


Ubbo-Emmius-Gymnasium Leer

Fraktale Kurven

Wie lang ist die Küstenlinie von Großbritannien?

Küstenlinie in verschiedenen Maßstäben gemessen

Bildung der Koch-Kurve

Umfang der Koch-Kurve

$$L_1 = 1LE + \frac{1}{3}LE = \frac{4}{3}LE$$

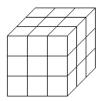
Umfang der Koch-Kurve

$$L_1 = 1LE + \frac{1}{3}LE = \frac{4}{3}LE$$

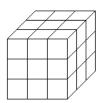
$$L_2 = \frac{4}{3}LE \cdot \frac{4}{3}LE = (\frac{4}{3})^2LE$$

Umfang der Koch-Kurve

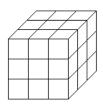
$$L_{1} = 1LE + \frac{1}{3}LE = \frac{4}{3}LE$$

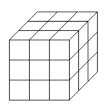

$$L_{2} = \frac{4}{3}LE \cdot \frac{4}{3}LE = (\frac{4}{3})^{2}LE$$

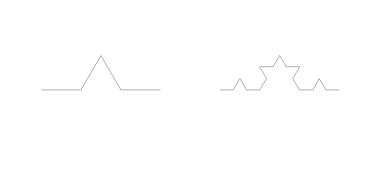
...


$$L = \lim_{n \to \infty} \left(\frac{4}{3}\right)^n = \infty$$

Mathematisch gesehen wird die Küstenlinie also unendlich lang, wenn sie genau bestimmt wird.




n = 3



$$n = 3$$

 $k = 9(Quadrat), k = 27(Würfel)$

$$n = 3$$

 $k = 9(Quadrat), k = 27(Würfel)$
 $\mathbf{k} = \mathbf{n}^{\mathbf{D}}$

$$k = n^D \iff D = \frac{\log k}{\log n}$$

$$k = n^D \iff D = \frac{\log k}{\log n}$$
$$n = 3$$

$$k = n^D \iff D = \frac{\log k}{\log n}$$

$$n = 3$$

$$k = 4$$

$$k = n^D \iff D = \frac{\log k}{\log n}$$

$$n = 3$$

$$k = 4$$

$$D = \frac{\log 4}{\log 3} \approx 1,2619$$

$$i^2 = -1$$

- $i^2 = -1$
- ▶ Beispiel: $c = 2 + 3 \cdot i$

- $i^2 = -1$
- ▶ Beispiel: $c = 2 + 3 \cdot i$

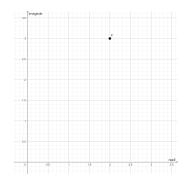
$$c^2 = (2 + 3 \cdot i) \cdot (2 + 3 \cdot i)$$

$$c^{2} = 2^{2} + 2 \cdot 2 \cdot 3 \cdot i + 3^{2} \cdot i^{2}$$
$$c^{2} = 4 + 12i - 9$$

$$c^{2} = 4 + 12i - 9i$$

 $c^{2} = -5 + 12i$

$$i^2 = -1$$


▶ Beispiel:
$$c = 2 + 3 \cdot i$$

$$c^{2} = (2+3 \cdot i) \cdot (2+3 \cdot i)$$

$$c^{2} = 2^{2} + 2 \cdot 2 \cdot 3 \cdot i + 3^{2} \cdot i^{2}$$

$$c^{2} = 4 + 12i - 9$$

$$c^{2} = -5 + 12i$$

$$z_{n+1} = (z_n)^2 + c, c \in \mathbb{C}, z_0 = 0$$

$$z_{n+1} = (z_n)^2 + c, c \in \mathbb{C}, z_0 = 0$$

ightharpoonup bleibt z_n beschränkt, gehört c zur Mandelbrot-Menge

$$z_{n+1} = (z_n)^2 + c, c \in \mathbb{C}, z_0 = 0$$

- ightharpoonup bleibt z_n beschränkt, gehört c zur Mandelbrot-Menge
- ▶ konkret: $|z_n| < 2$

$$z_{n+1} = (z_n)^2 + c, c \in \mathbb{C}, z_0 = 0$$

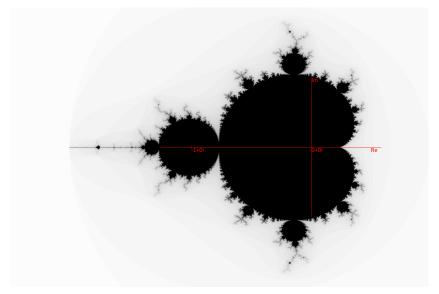
- ightharpoonup bleibt z_n beschränkt, gehört c zur Mandelbrot-Menge
- \triangleright konkret: $|z_n| < 2$

Darstellung auf der gaußschen Zahlenebene:

$$z_{n+1} = (z_n)^2 + c, c \in \mathbb{C}, z_0 = 0$$

- ightharpoonup bleibt z_n beschränkt, gehört c zur Mandelbrot-Menge
- ightharpoonup konkret: $|z_n| < 2$

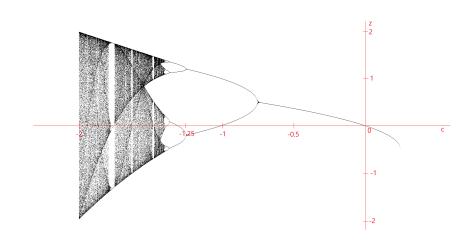
Darstellung auf der gaußschen Zahlenebene:

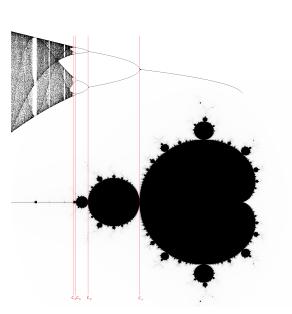

▶ Jedes *c*, das zur Mandelbrot-Menge gehört, wird schwarz gefärbt

$$z_{n+1} = (z_n)^2 + c, c \in \mathbb{C}, z_0 = 0$$

- ▶ bleibt z_n beschränkt, gehört c zur Mandelbrot-Menge
- ightharpoonup konkret: $|z_n| < 2$

Darstellung auf der gaußschen Zahlenebene:


- ► Jedes *c*, das zur Mandelbrot-Menge gehört, wird schwarz gefärbt
- Jedes c, das nicht zur Mandelbrot-Menge gehört, wird weiß gefärbt



Das "Apfelmännchen"

$\underline{\mathsf{Das}\;\mathsf{Feigenbaumdiagramm}}$

c = -0.5	c = -1	c = -1.25	c = -1.95	
-0.5	-1	-1.25	-1.95	
-0.25	0	0.312	1.852	
-0.438	-1	-1.152	1.482	
-0.309	0	0.078	0.246	
-0.405	-1	-1.244	-1.89	
-0.336	0	0.297	1.621	
-0.366	0	0.245	-1.242	
-0.366	-1	-1.19	-0.409	
-0.366	0	0.166	-1.783	
-0.366	-1	-1.222	1.229	
-0.366	0	0.244	-0.439	
-0.366	-1	-1.19	-1.758	
-0.366	0	0.167	1.139	
-0.366	-1	-1.222	-0.652	
	c = -0.5 -0.5 -0.25 -0.438 -0.309 -0.405 -0.336 -0.366 -0.366 -0.366 -0.366 -0.366 -0.366 -0.366	c = -0.5 c = -1 $-0.5 -1$ $-0.25 0$ $-0.438 -1$ $-0.309 0$ $-0.405 -1$ $-0.336 0$ $-0.366 -1$ $-0.366 0$ $-0.366 0$ $-0.366 0$ $-0.366 0$ $-0.366 0$ $-0.366 0$ $-0.366 0$ $-0.366 0$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	

Die Feigenbaumkonstante

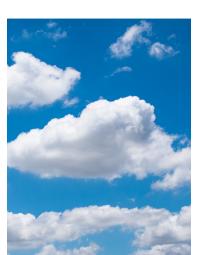
С	Perioden	$\frac{c_{n-1}-c_{n-2}}{c_n-c_{n-1}}$
$c_1 = -0.750$	2	-
$c_2 = -1.250$	4	-
$c_3 = -1.368$	8	4.2337
$c_4 = -1.394$	16	4.5515
$c_5 = -1.399$	32	4.6459

Die Feigenbaumkonstante

С	Perioden	$\frac{c_{n-1}-c_{n-2}}{c_n-c_{n-1}}$
$c_1 = -0.750$	2	-
$c_2 = -1.250$	4	-
$c_3 = -1.368$	8	4.2337
$c_4 = -1.394$	16	4.5515
$c_5 = -1.399$	32	4.6459

$$\delta = \lim_{n \to \infty} \frac{c_{n-1} - c_{n-2}}{c_n - c_{n-1}} \approx 4.6692016091$$

Fraktale in der Natur



Farnblatt

Barnsley-Farn

Quellen der Abbildungen

Küstenlinien:

Bild1: https://steemit.com/science/@sammy111100/fraktale-grossbrittaniens-kuestenlinie

Farnblatt:

https://de.dreamstime.com/stockbild-farnblattimage 14889101

Romanesco:

https://www.plantura.garden/gemuese/romanesco/romanesco-pflanzenportrait

Baum:

https://www.baumpflegeportal.de/aktuell/starke-baumtypen-baum-seidengewand/

Wolken:

https://sciencing.com/cumulus-clouds-made-up-8551751.html

Blitze:

https://science.howstuffworks.com/nature/natural-disasters/lightning.htm