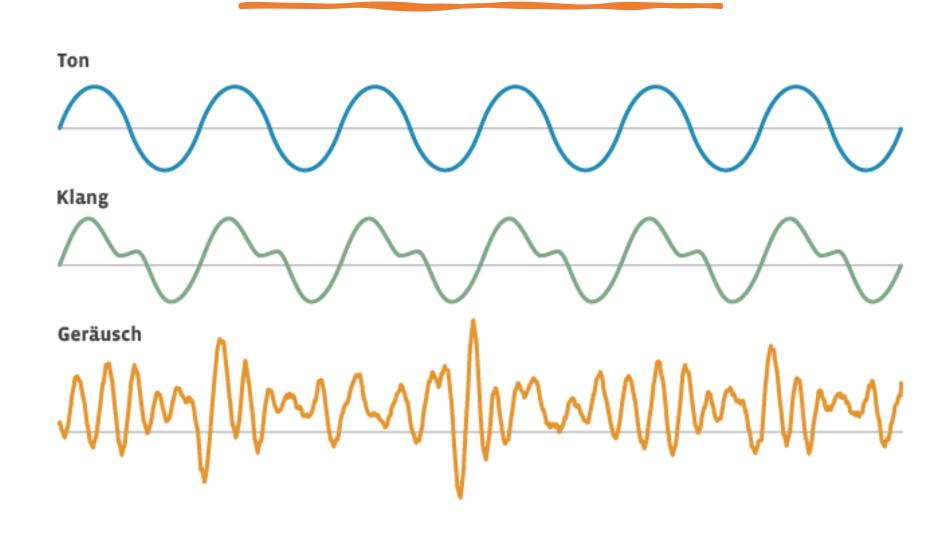


Teil 1 – Fourier Reihe

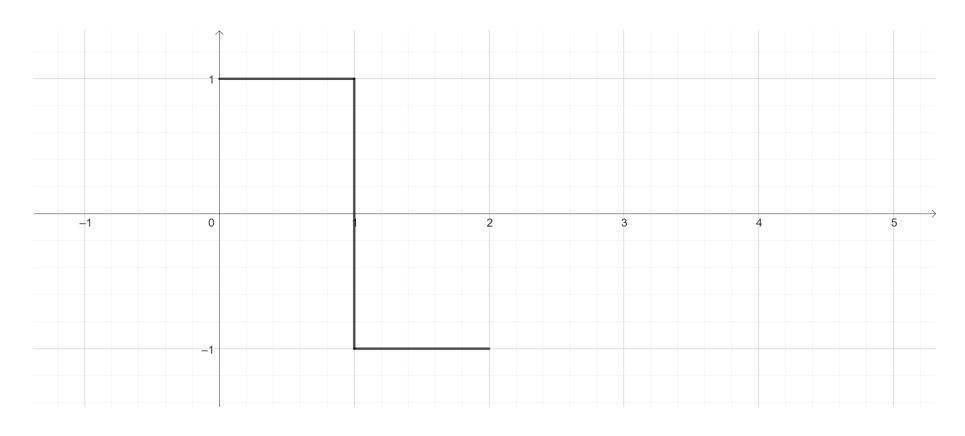
Hinführung und Aufstellen der Formel

Ziel der Facharbeit

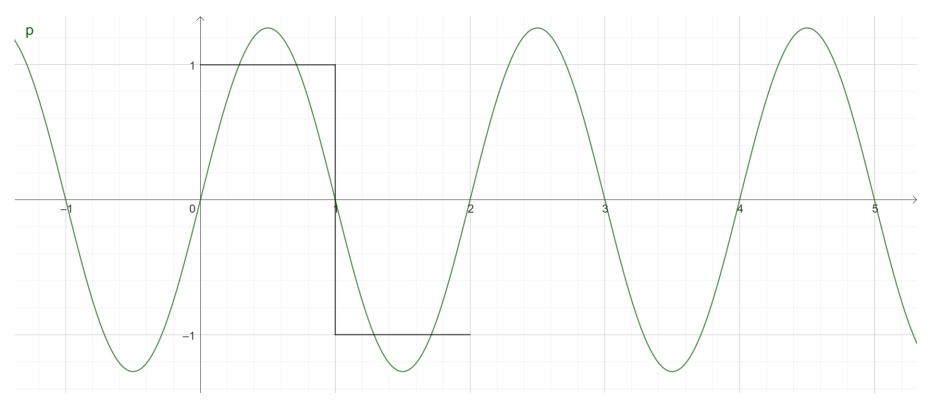


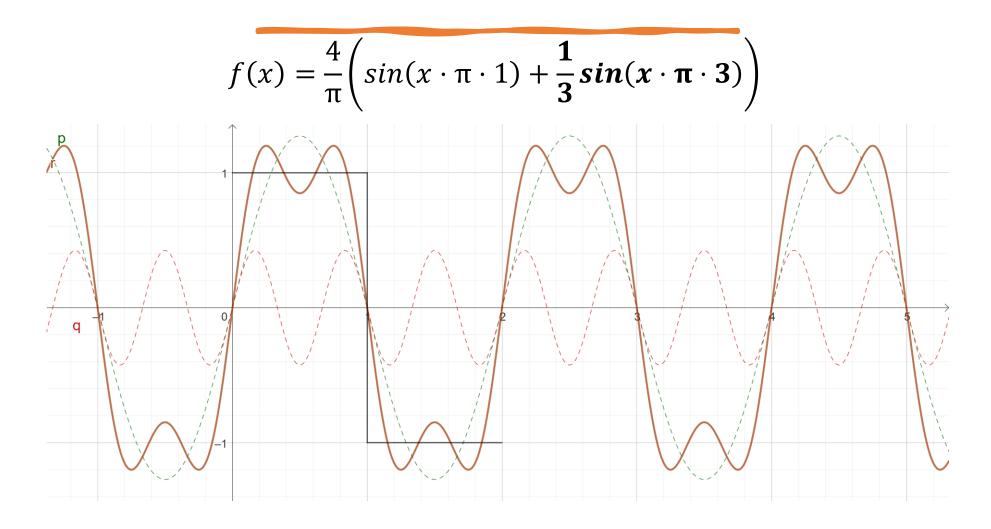
Beispiel: Eckiges Signal

Zu mathematisierendes Signal

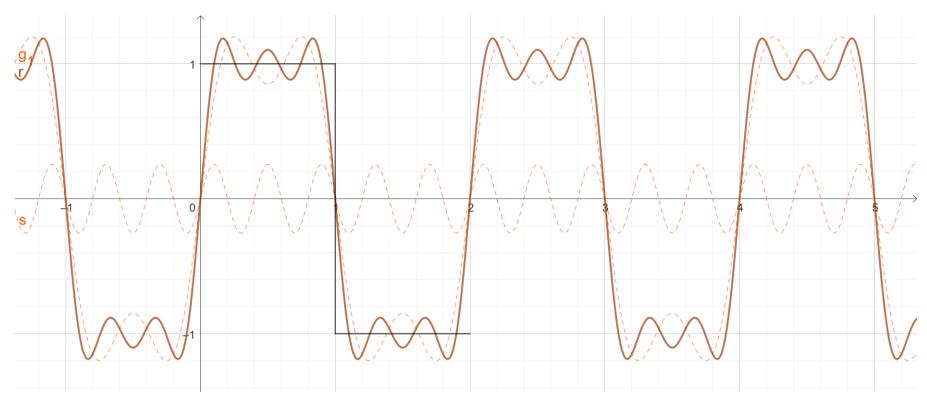


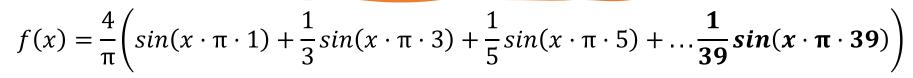
$$f(x) = \frac{4}{\pi} sin(x \cdot \pi \cdot 1)$$

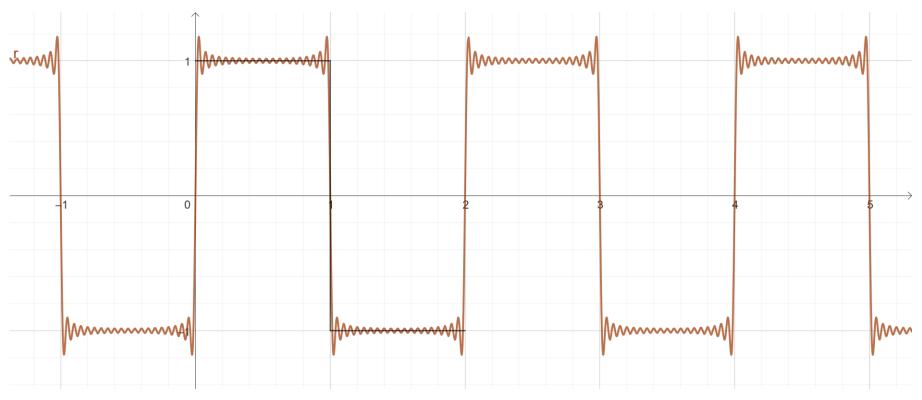




$$f(x) = \frac{4}{\pi} \left(sin(x \cdot \pi \cdot 1) + \frac{1}{3} sin(x \cdot \pi \cdot 3) + \frac{1}{5} sin(x \cdot \pi \cdot 5) \right)$$







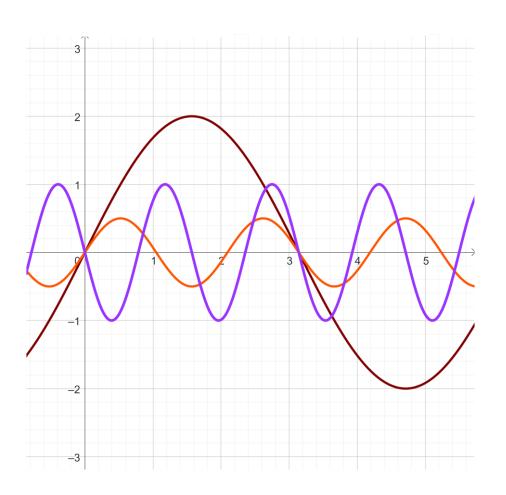
$$f_n(x) = \frac{4}{\pi} \sum_{k=1}^n \frac{\mathbf{1}}{2k-1} sin(x \cdot \pi \cdot (2k-1))$$

Allgemeine Formel der Fourier Reihe

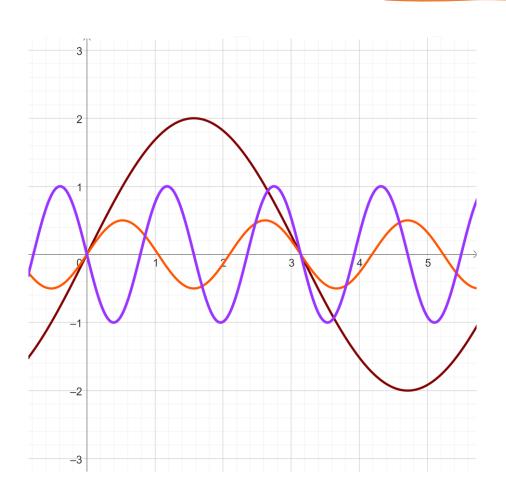
$$f(x) = \frac{A_0}{2} + \sum_{k=0}^{\infty} \left(A_k \cdot \cos(x \cdot \omega_k) + B_k \cdot \sin(x \cdot \omega_k) \right)$$

Teil 2 – Fourier Transformation

Mathematische Darstellung eigener Signale



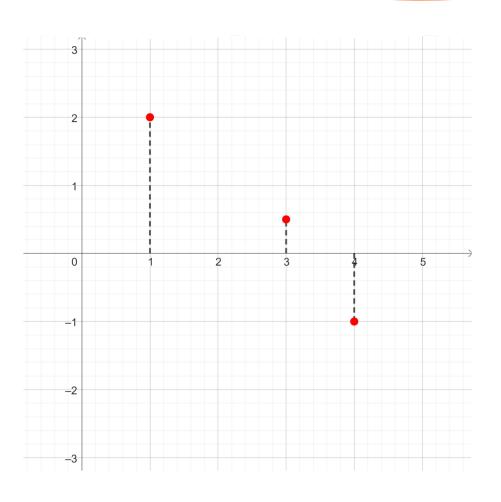




$$f(x) = 2 \cdot \sin(x)$$

$$f(x) = 0.5 \cdot \sin(3x)$$

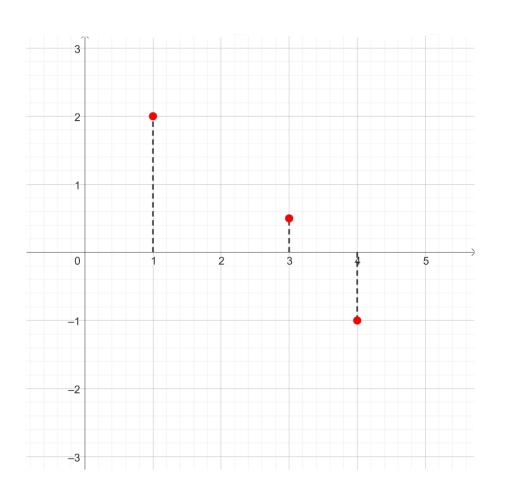
$$f(x) = -\sin(4x)$$

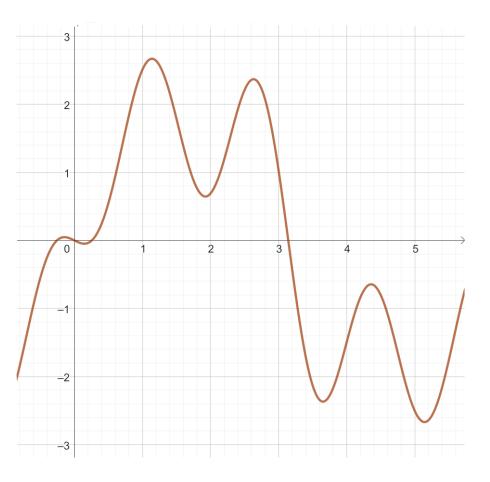


$$f(x) = 2 \cdot \sin(x)$$

$$f(x) = 0.5 \cdot \sin(3x)$$

$$f(x) = -\sin(4x)$$





Herleitung Fourier Transformation

$$F(\omega) = \int_{-\infty}^{\infty} (f(t)e^{-i\cdot\omega\cdot t})dt$$

Herleitung Fourier Transformation

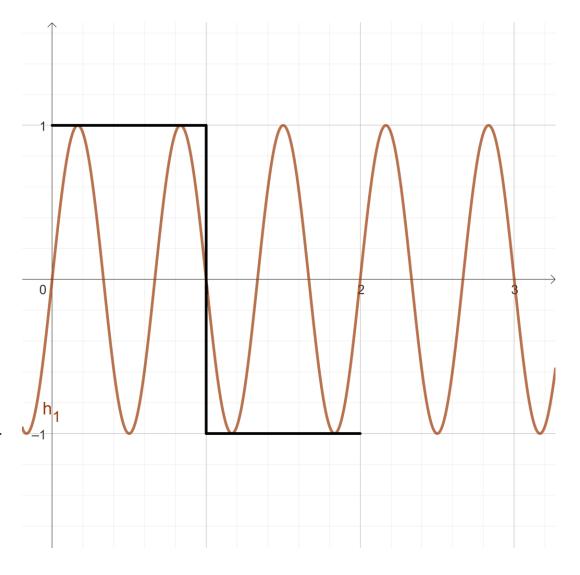
$$F(\omega) = \int_{-\infty}^{\infty} (f(t)e^{-i\cdot\omega\cdot t})dt$$

$$F(\omega) = \int_{-\infty}^{\infty} (f(t)(\cos(\omega t) - i \cdot \sin(\omega t))) dt$$

Herleitung am Beispiel

$$F(\omega) = \int_{-\infty}^{\infty} (f(t)(\cos(\omega t) - i \cdot \sin(\omega t))) dt$$

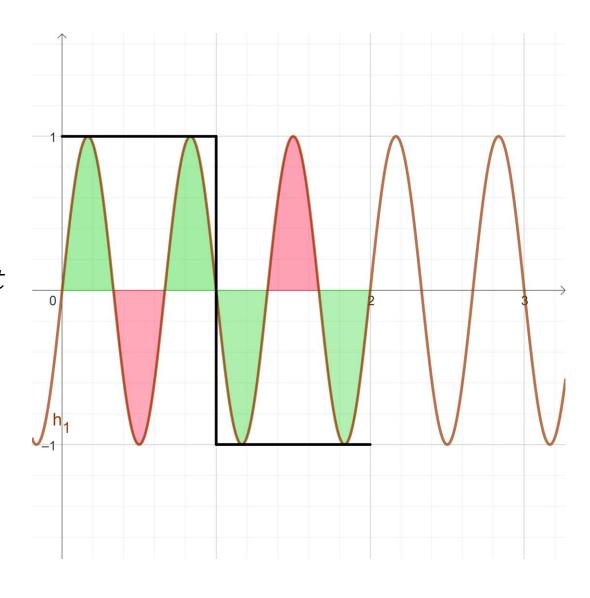
$$F(3\pi) = \int_{-\infty}^{\infty} (f(t)(\cos(3\pi t) - i \cdot \sin(3\pi t))) dt$$



Herleitung am Beispiel

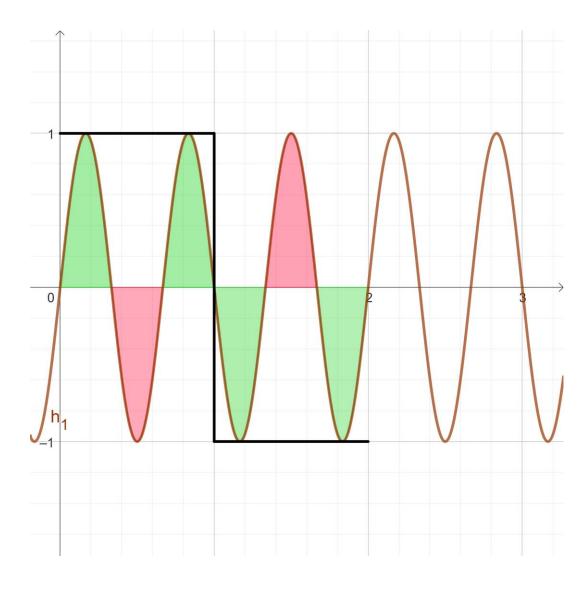
$$F(3\pi) = \int_{-\infty}^{\infty} (f(t)(\cos(3\pi t) - i \cdot \sin(3\pi t))) dt$$

$$F(3\pi) = \int_{-\infty}^{\infty} (f(t) \cdot \sin(3\pi t)) dt$$



Herleitung am Beispiel

$$F(3\pi) = 0.45345345 = \frac{4}{\pi} \cdot \frac{1}{3}$$



Skalierung der Fourier Transformation

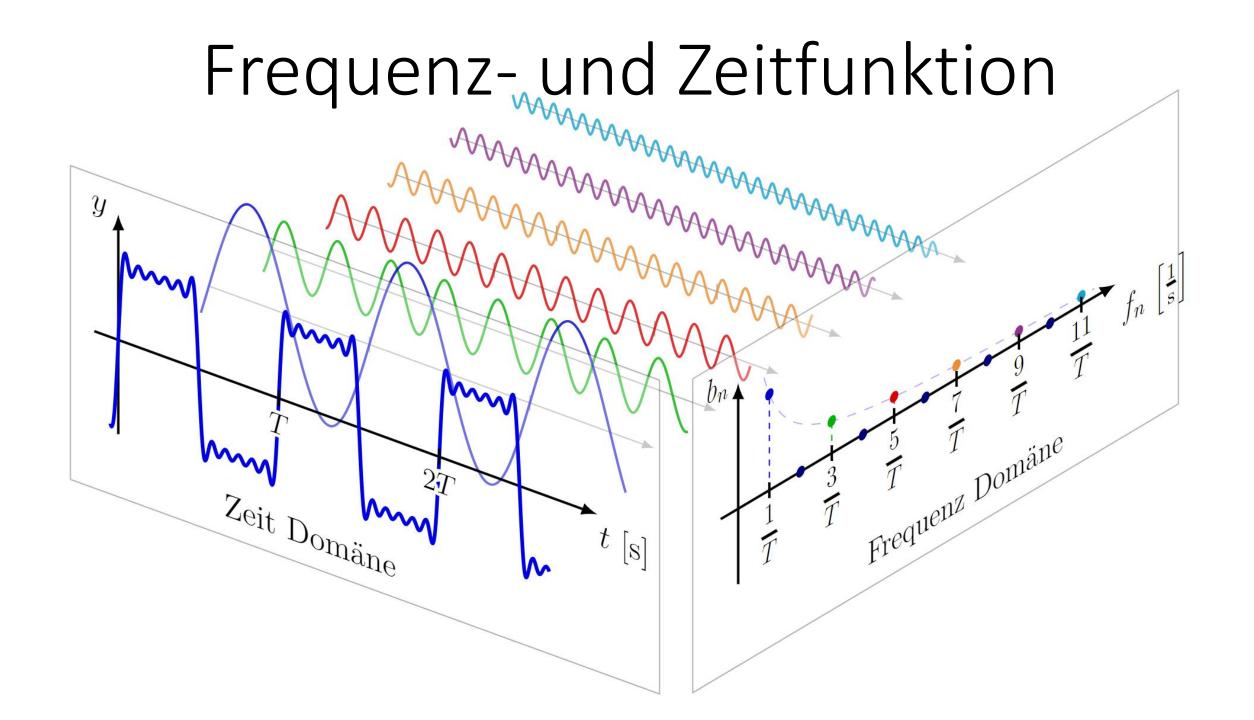
$$\frac{1}{\sqrt{T^n}}$$

Inverse Fourier Transformation:

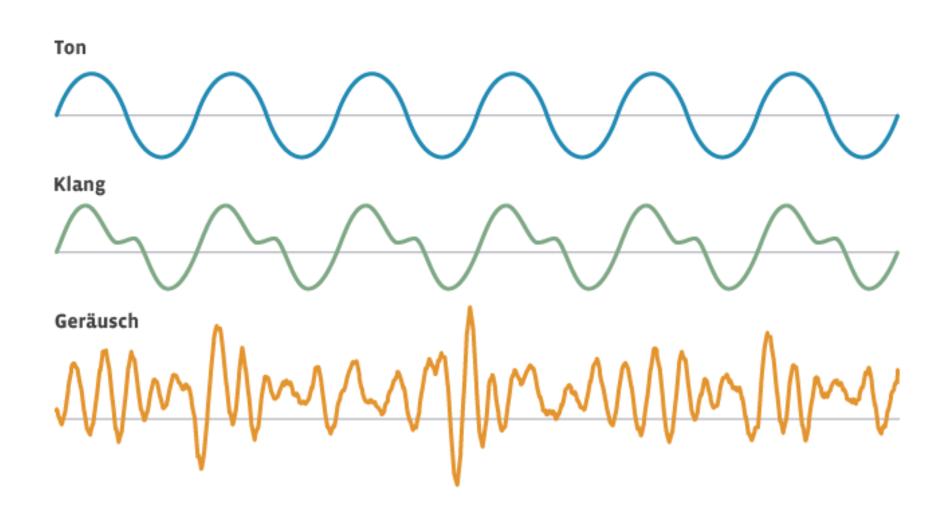
$$f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega) e^{i \cdot \omega \cdot t} d$$

Fourier Transformation:

$$F(\omega) = \int_{-\infty}^{\infty} (f(t)e^{-i\cdot\omega\cdot t})dt$$



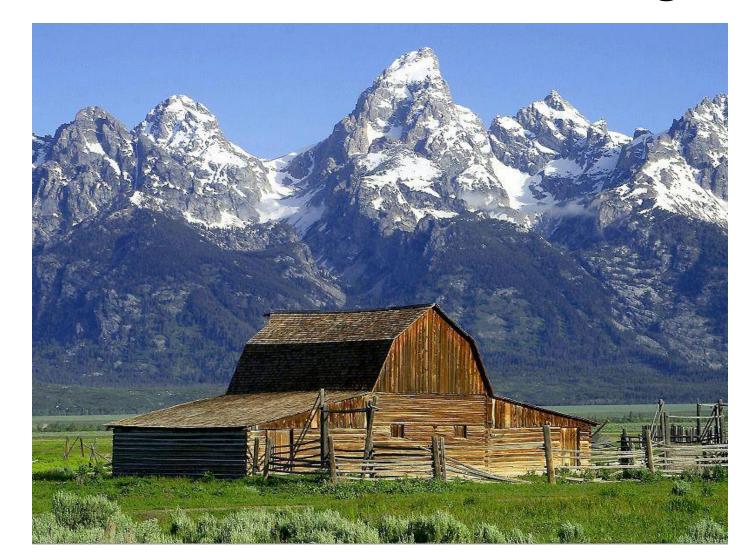
Anwendungsbezug



Teil 3 – Anwendungsbeispiel JPEG

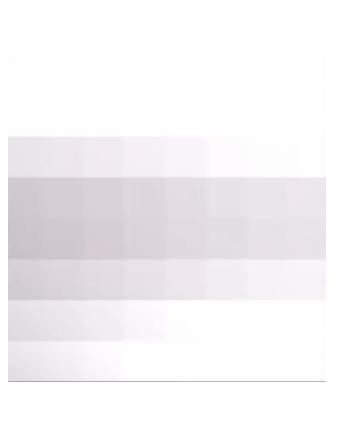
Funktionsweise und Beispiel

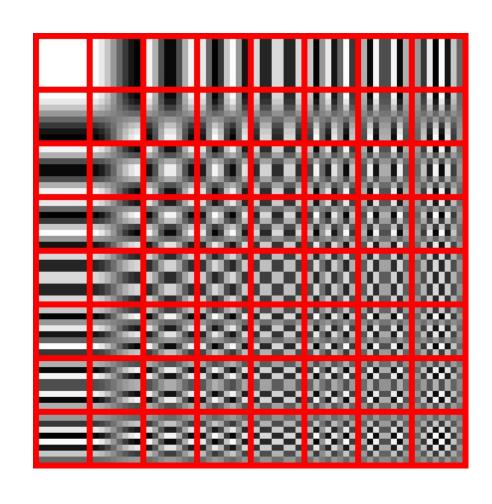
Farbraumumwandlung und Chrominanz-Vereinfachung



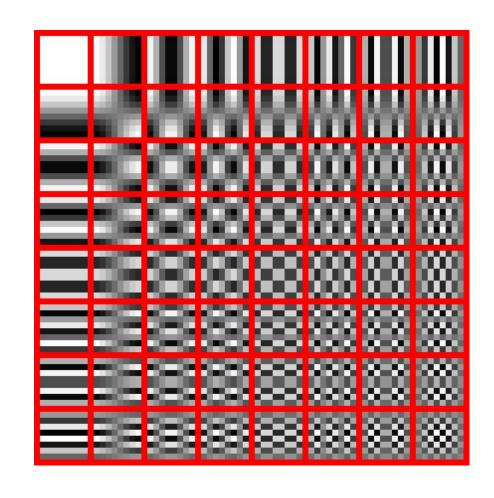
37	36	37	42	47	50	55	61
37	37	38	44	49	52	54	57
38	39	44	52	56	57	56	56
37	44	56	65	68		62	59
43	57	72	83	85		73	
54	57	97	105	102	93	84	
72	101	117	116	111	105	95	
91	115	124	121	116	108	100	92

-91	-92	-91	-86	-81	-78	-73	-67
-91	-91	-90	-84	-79	-76	-74	-71
-90	-89	-84	-76	-72	-71	-72	-72
-91	-84	-72	-63			-66	-69
-85	-71	-56	-45	-43			-62
-74	-71	-31	-23	-26	-35	-44	-51
-56	-27	-11	-12	-17	-23	-33	-43
-37	-13	-4	-7	-12	-20	-28	-36



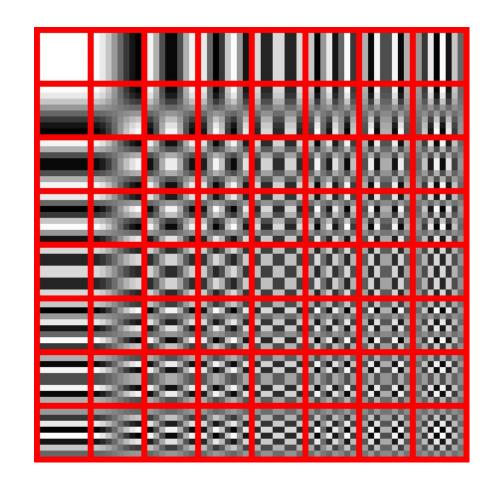


560	-41	-57	-12	-4	0	1	1
-180	-25	43	14	12	0	0	-1
42	17	16	-3	-4	-4	-2	0
-1	-12	-11	-3	3	4	4	2
1	2	4	1	-1	-3	-3	-1
1	0	-1	0	5	4	4	2
-2	-3	-1	0	5	4	4	2
2	3	2	0	-3	-4	-4	-2



Quantisierung

4	3	4	4	4	6	11	15
3	3	3	4	5	8	14	19
3	4	4	5	8	12	16	20
4	5	6	7	12	14	18	20
6	6	9	11	14	17	21	23
9	12	12	18	23	22	25	21
11	13	15	17	21	23	25	21
13	12	12	13	16	19	21	21



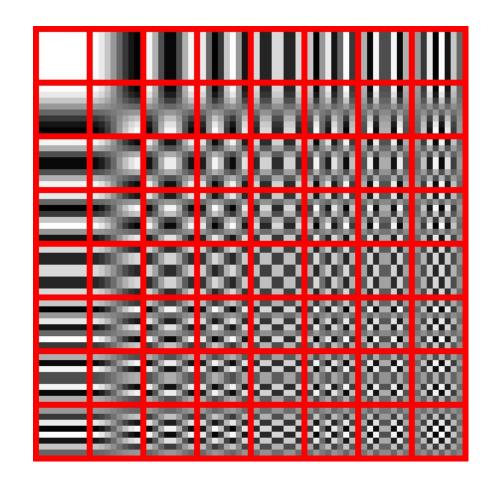
Quantisierung

4	3	4	4	4	6	11	15
3	3	3	4	5	8	14	19
3	4	4	5	8	12	16	20
4	5	6	7	12	14	18	20
6	6	9	11	14	17	21	23
9	12	12	18	23	22	25	21
11	13	15	17	21	23	25	21
13	12	12	13	16	19	21	21

560	-41	-57	-12	-4	0	1	1
-180	-25	43	14	12	0	0	-1
42	17	16	-3	-4	-4	-2	0
-1	-12	-11	-3	3	4	4	2
1	2	4	1	-1	-3	-3	-1
1	0	-1	0	5	4	4	2
-2	-3	-1	0	5	4	4	2
2	3	2	0	-3	-4	-4	-2

Quantisierung

140	-14	-14	-3	-1	0	0	0
-60	-8	14	4	2	0	0	0
14	4	4	-1	-1	0	0	0
0	-2	-2	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0



Huffman- und Lauflängenkodierung

```
140 -14 -60 14 -8 -14 -3 14 4 2x 0 -2 2x 4 -1 0 2 -1 -2 6x -1 38x 0
```

Fazit

Persönliches Fazit und Zusammenfassung